Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(11): 5636-5644, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457784

RESUMO

The evaluation of toxicity and environmental behavior of bioactive lead molecules is helpful in providing theoretical support for the development of agrochemicals, in line with the sustainable development of the ecological environment. In previous work, some acethydrazide structures have been demonstrated to exhibit excellent and broad-spectrum fungicidal activity; however, its environmental compatibility needs to be further elucidated if it is to be identified as a potential fungicide. In this project, the toxicity of fungicidal acethydrazide lead compounds F51, F58, F72, and F75 to zebrafish was determined at 10 µg mL-1 and 1 µg mL-1. Subsequently, the toxic mechanism of compound F58 was preliminarily explored by histologic section and TEM observations, which revealed that the gallbladder volume of common carp treated with compound F58 increased, accompanied by a deepened bile color, damaged plasma membrane, and atrophied mitochondria in gallbladder cells. Approximately, F58-treated hepatocytes exhibited cytoplasmic heterogeneity, with partial cellular vacuolation and mitochondrial membrane rupture. Metabolomics analysis further indicated that differential metabolites were enriched in the bile formation-associated steroid biosynthesis, primary bile acid biosynthesis, and taurine and hypotaurine metabolism pathways, as well as in the membrane function-related glycerophospholipid metabolism, linolenic acid metabolism, α-linolenic acid metabolism, and arachidonic acid metabolism pathways, suggesting that the acethydrazide F58 may have acute liver toxicity to common carp. Finally, the hydrolysis dynamics of F58 was investigated, with the obtained half-life of 5.82 days. The above results provide important guiding significance for the development of new green fungicides.


Assuntos
Fungicidas Industriais , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Hidrólise , Bile , Metabolômica
2.
J Agric Food Chem ; 71(46): 17988-17998, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37916897

RESUMO

Structure optimization based on natural products has become an effective way to develop new green fungicides. In this project, thirty-two novel NPs-derived hydrazide compounds were designed and synthesized by introducing the bioactive hydrazide substructure into sinapic acid and mycophenolic acid. The fungicidal bioassays indicated that the obtained hydrazide compounds showed excellent and selective fungicidal activity against specific pathogens, especially compounds C8, D7, and D8 with EC50 values of 0.63, 0.56, and 0.43 µg mL-1 against M. oryzae, respectively. SAR indicated that the introduction of 4-fluoro, 4-chloro, and 2,4-difluoro groups was conducive to improving the fungicidal activity, while the extension of the hydrazide bridge would affect the selectivity for inhibitory activity. Subsequently, the effects of hydrazide compounds on rice seedling and zebrafish growth were also investigated. The fungicidal mechanism implied that treatment with compound B4 would cause significant changes in metabolites of plasma membrane-related linolenic acid metabolism, arachidonic acid metabolism, and α-linolenic acid metabolism pathways, which further led to the wrinkled hyphae and the blurred plasma membrane and cytoplasm. Finally, the frontier molecular orbitals and charge distribution were calculated to analyze the differences in bioactivity from a structural perspective. These results provide important guidance for the development and practical application of novel fungicides.


Assuntos
Fungicidas Industriais , Animais , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Relação Estrutura-Atividade , Ácido Micofenólico/farmacologia , Peixe-Zebra
3.
J Agric Food Chem ; 71(32): 12333-12345, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534702

RESUMO

In this project, quinoline and quinolone-containing hydrazide compounds were designed and synthesized by introducing a bioactive hydrazide group into the skeleton of waltherione F. The fungicidal activity revealed that some hydrazide compounds exhibited excellent and broad-spectrum fungicidal activity; especially, compounds E8, E12, and E16 showed more than 90% or even 100% inhibition rates against most pathogens at 50 µg·mL-1. The fungicidal mechanism indicated that compound E8 may affect the normal function of the plasma membrane, further generating changes in the morphology and subcellular structure of mycelia. Simultaneously, Fusarium graminearum may resist the E8-treated stress through the metabolic pathways related to l-glutamate, l-glutamine, and glutathione. Finally, the effect of compound E8 on wheat seedling's growth and the toxicity to zebrafish were accomplished. These results will provide important guidance to discover novel fungicidal lead compounds and explore new targets, which are effective ways to alleviate the increasingly severe drug resistance.


Assuntos
Alcaloides , Fungicidas Industriais , Quinolonas , Animais , Hidrazinas , Peixe-Zebra , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Alcaloides/farmacologia , Alcaloides/química , Relação Estrutura-Atividade
4.
J Agric Food Chem ; 71(22): 8297-8316, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249236

RESUMO

Hydrazides are present in many bioactive molecules and exhibit a variety of biological activities, such as insecticidal, herbicidal, antifungal, antitumor, and antiviral effects. In this Review, we review the application of hydrazide and its derived structures in the agricultural fungicidal field, including monohydrazides, diacylhydrazines, hydrazide-hydrazones, and sulfonyl hydrazides. In addition, the antifungal mechanism of action of the hydrazide derivatives was analyzed and summarized, mainly involving succinate dehydrogenase inhibitors, laccase inhibitors, and targeting plasma membranes. Finally, based on the structural analysis of the novel fungicidal lead compounds, the structure-activity relationship of the hydrazide derivatives was constructed and the development trend of hydrazide structures in fungicidal applications was prospected. It is hoped that this Review can provide some significant guidance for the development of new hydrazide fungicides in the future.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Hidrazinas/farmacologia , Hidrazinas/química , Antifúngicos/farmacologia , Relação Estrutura-Atividade , Hidrazonas/química , Antibacterianos/farmacologia
5.
J Agric Food Chem ; 71(1): 920-933, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534960

RESUMO

The development of new green fungicides is an effective way to solve the resistance of agricultural pathogens and plays an important role in promoting high-quality and sustainable development of modern agriculture. In this project, a series of aryloxy-, arylthio-, and arylamino-containing acethydrazide derivatives were designed, synthesized, and characterized by 1H nuclear magnetic resonance (NMR), 13C NMR, and high-resolution mass spectrometry (HRMS). The fungicidal bioassays indicated that some compounds showed excellent and broad-spectrum fungicidal activity, and the structure-activity relationship was discussed. The in vivo fungicidal activity demonstrated that compounds C4 and D8 exhibited good preventative effects against Fusarium graminearum infecting wheat leaves, of which the preventative activity of compound D8 was almost equal to that of the positive agents. Transmission electron microscopy (TEM) observation revealed that the plasma membrane in the C4-treated F. graminearum hyphal cells was severely contracted and separated with the cell wall, coupling with the visible lysosomes and the disappeared cytoplasm and organelles, which may be the reasons for the shriveled and even ruptured hyphae observed by scanning electron microscopy (SEM). Subsequently, transcriptomics and metabolomics were performed to further elucidate the fungicidal mechanism. The regulatory networks of differential genes and metabolites in plasma membrane-related sphingolipid metabolism, linoleic acid metabolism, α-linoleic acid metabolism, and arachidonic acid metabolism were constructed and elaborated. Additionally, preliminary investigation of seeding growth suggested that compounds C4 and D8 may have different degrees of influence on the growth indicators of wheat seedlings; however, this effect may be negligible as the plant grows.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Ácido Linoleico , Doenças das Plantas/prevenção & controle , Relação Estrutura-Atividade , Espectroscopia de Ressonância Magnética
6.
Bioinorg Chem Appl ; 2012: 756374, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055949

RESUMO

Vanadium compounds were studied during recent years to be considered as a representative of a new class of nonplatinum metal anticancer agents in combination to its low toxicity. Here, we found a vanadium compound Van-7 as an inhibitor of Topo I other than Topo II using topoisomerase-mediated supercoiled DNA relaxation assay. Agarose gel electrophoresis and comet assay showed that Van-7 treatment did not produce cleavable complexes like HCPT, thereby suggesting that Topo I inhibition occurred upstream of the relegation step. Further studies revealed that Van-7 inhibited Topo I DNA binding involved in its intercalating DNA. Van-7 did not affect the catalytic activity of DNase I even up to100 µM. Van-7 significantly suppressed the growth of cancer cell lines with IC(50) at nanomolar concentrations and arrested cell cycle of A549 cells at G2/M phase. All these results indicate that Van-7 is a potential selective Topo I inhibitor with anticancer activities as a kind of Topo I suppressor, not Topo I poison.

7.
J Chromatogr A ; 1217(17): 2821-31, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20227703

RESUMO

This work describes a liquid chromatography-tandem mass spectrometry (LC-MS/MS) procedure for multiplex screening, ultratrace quantification and reliable confirmation of barbital series residues in animal-derived food matrices. The method is developed based on a distinct dependency of the electrospray ionization (ESI) response of nine structural homologues on LC eluent properties and gas-phase ion chemistry during the ESI process. The "wrong-way-round" negative ionization aspect has been explored to optimize the compatibility of the hyphenated LC-MS/MS technique, which facilitates detection limits at 30-100-fold lower than 0.01 ppm without derivatization or post-column basification step. A mobile phase using methanol modified with 0.01% acetic acid is adopted to achieve an approximately 2-9-fold increase in signal-to-noise ratio over the results under suboptimal conditions. There is no significant differential matrix effects or deuterium isotope effects on chromatographic retention and ESI responsiveness at all levels across the different analyte-matrix pairs. Mean recoveries ranged from 79.6% (barbital) to 108% (secobarbital) at fortified levels of 0.5-20 ng/g within relative standard deviations less than 11%. Between-run repeatability and within-laboratory reproducibility were 3-11% and 5-13%, respectively. An ion ratio criterion for valid detection limit data for simultaneous screening of homologous multiresidues in complex sample matrices is proposed. The satisfactory applicability of the newly described procedure to 43 real samples including pork, poultry meat, swine liver, fish tissue and shrimp muscle demonstrated the LC-MS/MS technique with facile sample handling can serve as an attractive alternative analytical method accepted for regulatory purpose.


Assuntos
Barbital/análise , Cromatografia Líquida/métodos , Resíduos de Drogas/análise , Carne/análise , Espectrometria de Massas em Tandem/métodos , Animais , Peixes , Hipnóticos e Sedativos/análise , Limite de Detecção , Aves Domésticas , Suínos
8.
Ying Yong Sheng Tai Xue Bao ; 13(9): 1198-200, 2002 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-12561192

RESUMO

The relationship between the occurrence type of Dendrolimus punctatus and the geographical and vegetative features in subcompartments was analyzed using correspondence analysis and shown by a figure of cluster. The results showed that the majority subcompartments in which D. punctatus occurred frequently were at low elevation and low slope, and distributed among low hills or middle hills, while the subcompartments at high elevation or high slopes, or in low mountains or middle mountains were safe-type. The subcompartments with only one dominant species, especially Pinus elliottii, were easily attacked by D. punctatus. The subcompartments in conifer and broadleaf mixed forest had less insect pests than those in conifer mixed forest.


Assuntos
Ecossistema , Meio Ambiente , Lepidópteros/fisiologia , Fenômenos Fisiológicos Vegetais , Altitude , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...